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Notation

K arbitrary field;

Mn,p(K) the vector space of n × p matrices, entries in K;

L(U,V ) space of all linear maps from U to V (U and V
finite-dimensional vector spaces over K);
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Notation
Range-compatible maps
The problem

Let S linear subspace of L(U,V ). A map

F : S → V

is range-compatible when

∀s ∈ S, F (s) ∈ Im s.

It is local when there exists x ∈ U s.t.

∀s ∈ S, F (s) = s(x).
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Notation
Range-compatible maps
The problem

Every local map is range-compatible! The converse fails in
general, even for linear maps.
Example:

S :=
{[a b

0 a

]
| (a,b) ∈ K

2
}

and

F :

[
a b
0 a

]
7→

[
b
0

]
.
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Notation
Range-compatible maps
The problem

A known (?) theorem:

Theorem

Every RC linear map on L(U,V ) is local.

The problem:

Does this still hold for large subspaces of L(U,V )?
How large?

What about RC homomorphisms?
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Connection with spaces of bounded rank matrices
Connection with linear invertibility preservers
Connection with algebraic reflexivity

In the study of large spaces of bounded rank matrices

Let n,p, r positive integers s.t. n ≥ r . Let

W ⊂ Mn,r (K)

with codimW ≤ n − 2, and F : W → Mn,p(K) lin. map. Assume
that every matrix in

V :=
{[

N F (N)
]
| N ∈ W

}
⊂ Mn,p+r (K)

has rank ≤ r . Then,

∀N ∈ W, Im F (N) ⊂ Im N.

(this uses Flanders’s theorem for affine spaces).
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Now, write
F (N) =

[
C1(N) · · · Cp(N)

]
.

Each Ci map is RC!
If one can prove that Ci is local, then using column operations
one finds V equivalent to a subspace of matrices of the form

[
[?]n×r [0]n×p

]
.
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Invertibility preservers

Theorem (de Seguins Pazzis, 2012)

Let S be a linear subspace of Mn(K) with codimS ≤ n − 2. Let

u : S → Mn(K)

an injective linear map s.t.

∀M ∈ S, u(M) ∈ GLn(K) ⇔ M ∈ GLn(K).

Then, there exists (P,Q) ∈ GLn(K)2 s.t.

u : M 7→ PMQ or u : M 7→ PMT Q.
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Sketch of proof if n ≥ 3

For d ∈ P(Kn), one sets Ed := {M ∈ Mn(K) : d ⊂ Ker M}
and Ed := (Ed )

T .

One proves that, for all d ∈ P(Kn), either u−1(Ed ) = Ed ′ ∩S
or u−1(Ed ) = Ed ′

∩ S for some d ′ ∈ P(Kn), and ditto for the
Ed spaces. This uses the Atkinson-Lloyd theorem.

Composing u with M 7→ MT if necessary, one reduces the
situation to the one where there are bijections

ϕ : P(Kn) → P(Kn) and ψ : P(Kn) → P(Kn)

such that

∀d ∈ P(Kn), u−1(Ed ) = Eϕ(d)∩S and u−1(Ed) = Eψ(d)∩S.
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Connection with spaces of bounded rank matrices
Connection with linear invertibility preservers
Connection with algebraic reflexivity

Using the fundamental theorem of projective geometry, one
shows that ψ is a homography.
WLOG, ψ = id. Then,

∀M ∈ S, Im u(M) ⊂ Im M.

We split
u(M) =

[
F1(M) · · · Fn(M)

]

Then, F1, . . . ,Fn are RC!
If we know that the Fi ’s are local, then,

u : M 7→ MQ

for some Q ∈ Mn(K). Using codimS ≤ n − 2, one finds that Q
is invertible, QED.
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Connection with algebraic reflexivity

Let S lin. subspace of L(U,V ). Its reflexive closure is

R(S) :=
{

g ∈ L(U,V ) : ∀x ∈ U, ∃f ∈ S : g(x) = f (x)
}
.

Problem: Find sufficient conditions on S so that R(S) = S (that
is, S is algebraically reflexive ).

For x ∈ U, set
x̂ : s ∈ S 7→ s(x) ∈ V .

Then,
Ŝ :=

{
x̂ | x ∈ U} ⊂ L(S,V )

dual operator space.

Clément de Seguins Pazzis Range-compatible homomorphisms on matrix spaces



Introduction
Motivation for studying RC homomorphisms

Main theorems
Main techniques

Proof of the classification theorems

Connection with spaces of bounded rank matrices
Connection with linear invertibility preservers
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Consider a linear map

F : Ŝ → V .

Then,
F̌ : x ∈ U 7→ F (x̂) ∈ V

is linear. One proves that

F local ⇔ F̌ ∈ S

and
F RC ⇔ F̌ ∈ R(S).
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Hence, every RC linear map on Ŝ is local iff R(S) = S.

More generally, one obtains

R(S)/S ≃ Lrc(Ŝ,V )/Lloc(Ŝ,V ).

and
Lrc(S,V )/Lloc(S,V ) ≃ R(Ŝ)/Ŝ .
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Main theorems on RC homomorphisms

The first step:

Theorem (de Seguins Pazzis, 2010)

Let S lin. subspace of L(U,V ) with codimS ≤ dim V − 2. Then,
every RC linear map on S is local.

This is Lemma 8 from:
C. de Seguins Pazzis, The classification of large spaces of matrices with

bounded rank, in press at Israel Journal of Mathematics, arXiv:

http://arxiv.org/abs/1004.0298
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Generalization:

Theorem (First classification theorem)

Let S lin. subspace of L(U,V ) with codimS ≤ dim V − 2.
Then, every RC homomorphism on S is local.

The bound is optimal for homomorphisms. Let ϕ : K → K

non-linear group homomorphism. Then,

F :

[
a [?]1×(p−1)

[0](n−1)×1 [?](n−1)×(p−1)

]
7−→

[
ϕ(a)

[0](n−1)×1

]

range-compatible but non-local.
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The optimal bound for linear maps

Theorem (Classification theorem for linear maps)

Let S lin. subspace of L(U,V ) with codimS ≤ 2 dim V − 3 if
#K > 2, and codimS ≤ 2 dim V − 4 if #K = 2.
Then, every RC linear map on S is local.

See C. de Seguins Pazzis, Range-compatible homomorphisms on matrix

spaces, arXiv: http://arxiv.org/abs/1307.3574
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A counter-example at the 2 dim V − 2 threshold

The map



a b [?]1×(p−2)
0 a [?]1×(p−2)

[0](n−2)×1 [0](n−2)×1 [?](n−2)×(p−2)


 7−→




b
0

[0](n−2)×1




is range-compatible, linear and non-local.
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The symmetric case

Theorem

If #K > 2 then every RC linear map on Sn(K) is local.

Counter-example for F2. The diagonal map

∆ : M = (mi ,j) ∈ Sn(K) 7→




m1,1
...

mn,n


 ∈ K

n

is RC!
Indeed, for all X ∈ F

n
2,

MX = 0 ⇒ X T MX = 0 ⇒
n∑

k=1

mk ,kx2
k = 0 ⇒ ∆(M)⊥X .
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Theorem

Every RC linear map on Sn(F2) is either local or the sum of a
local map with ∆.

In particular,



a b [?]1×(p−2)

b c [?]1×(p−2)

[0](n−2)×1 [0](n−2)×1 [?](n−2)×(p−2)


 7−→




a
c

[0](n−2)×1




is range-compatible, linear and non-local.
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Splitting
A basic application of splitting: the full space case
The projection technique

The splitting technique

Let A, B respective lin. subspaces of Mn,p(K) and Mn,q(K).
One sets

A
∐

B :=
{[

A B
]
| A ∈ A, B ∈ B

}
.

Every homomorphism (resp. linear map) F from A
∐

B to K
n

splits as
f
∐

g :
[
A B

]
7→ f (A) + g(B)

where f : A → K
n and g : B → K

n are homomorphisms (resp.
linear maps). Moreover:

f
∐

g is RC iff f and g are RC;

f
∐

g is local iff f and g are local.
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Splitting
A basic application of splitting: the full space case
The projection technique

Lemma

Assume dim U = 1. Let S ⊂ L(U,V ).
Every RC linear map on S is local.
If dimS 6= 1, every RC homomorphism on S is local.

Proof: We can assume S ⊂ K
n. Let F : S → K

n a RC
homomorphism. Then, ∀X ∈ S, F (X ) ∈ KX . Then it is known
that F : X 7→ λX for some fixed λ if F is linear or dimS 6= 1. �
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Splitting
A basic application of splitting: the full space case
The projection technique

As a corollary, every RC homomorphism on L(U,V ) is local if
dim V ≥ 2: indeed if n ≥ 2 and p ≥ 1 we split

Mn,p(K) = K
n
∐

· · ·
∐

K
n

and we know that every RC homomorphism on K
n is local.
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Splitting
A basic application of splitting: the full space case
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The projection technique

Let V0 lin. subspace of V , and π : V ։ V/V0 the standard
projection. Let F : S → V a RC homomorphism. Set

S mod V0 := {π ◦ s | s ∈ S},

lin. subspace of L(U,V/V0). Then, there is a unique RC
homomorphism F mod V0 on S mod V0 s.t.

∀s ∈ S, (F mod V0)(π ◦ s) = π(F (s)).
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A basic application of splitting: the full space case
The projection technique

Hence, we have a commutative square

S
F

//

s 7→π◦s
��

V

π

��

S mod V0 F mod V0

// V/V0.

Most of the time, one takes V0 = Ky where y non-zero vector,
and one simply writes

S mod y := S modKy and F mod y := F modKy .
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The first classification theorem
The classification theorem for RC linear maps

Theorem

Let S lin. subspace of L(U,V ) with codimS ≤ dim V − 2. Then,
every RC homomorphism on S is local.

The basic idea: induction on the dimension of V .
If dim V ≤ 1, the result is void. If S = L(U,V ) and the result is
known. In particular we can assume dim V > 2 and
S 6= L(U,V ). A vector y ∈ V \ {0} is good is

codim(S mod y) ≤ dim(V/Ky) − 2.

By the rank theorem, if y is not good then S contains every
operator with range Ky ! As S 6= L(U,V ):

The space V has no basis of bad vectors!
Hence, the bad vectors are trapped into some linear
hyperplane of V .
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The first classification theorem
The classification theorem for RC linear maps

This yields linearly independent good vectors y1 and y2. By
induction each F mod yi is local! This yields x1, x2 in U s.t.

∀s ∈ S, F (s) = s(xi ) mod Kyi .

If x1 = x2, then F : s 7→ s(x1).

Assume that x1 6= x2.
Then, s(x1 − x2) ∈ Vect(y1, y2) for all s ∈ S !
Then, x1 − x2 extends into a basis of U.
S represented by P

∐
Mn,p−1(K), where P a 2-dimensional

subspace of Kn. Then, by splitting F is local!
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The first classification theorem
The classification theorem for RC linear maps

We only consider the case when #K > 2.
Same strategy, induction on dim V . Case dim V ≤ 1 void.

Case dim V = 2. Then, either S = L(U,V ), or S is represented
by D

∐
M2,p−1(K) or by S2(K)

∐
M2,p−2(K), where

D = K× {0}. Then, one uses the splitting lemma.

In the rest, we assume dim V ≥ 3.
A non-zero vector y ∈ V is good if

codim(S mod y) ≤ 2 dim(V/Ky) − 3.

By the rank theorem

codim(S mod y) = codimS − (dim U − dim U ′)

where U ′ := {s ∈ S : Im s ⊂ Ky}.
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The classification theorem for RC linear maps

Consider the orthogonal space

S⊥ :=
{

t ∈ L(V ,U) : ∀s ∈ S, tr(t ◦ s) = 0
}
.

Then,
dim U − dim U ′ = dim(S⊥y).

Hence,
codim(S mod y) = codimS − dim(S⊥y).

Consequence:
y bad ⇒ dimS⊥y ≤ 1.

Claim

The space V has a basis of good vectors, or every RC linear
map on S is local.
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The classification theorem for RC linear maps

Proof of the claimed statement

Assume that there is no basis of V made of good vectors.
Then,

codimS = 2 dim V − 3.

Indeed, if not dimS⊥y = 0 for every bad vector y , whence
S⊥ = {0} and codimS ≤ 2 dim V − 5!

Next, there is a linear hyperplane H of V that contains all the
good vectors. Hence, dimS⊥y ≤ 1 for all y ∈ V \ H.
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The classification theorem for RC linear maps

Then, every operator in Ŝ⊥ has rank ≤ 1.
Indeed, if the contrary holds we have a quadratic form q on V
such that

∀y ∈ V , q(y) 6= 0 ⇒ rk ŷ ≥ 2.

Then, we choose a non-zero linear form ϕ on V s.t. Kerϕ = H,
and hence

∀y ∈ V , ϕ(y)q(y) = 0.

This is absurd since #K > 2.

Hence
∀t ∈ Ŝ⊥, rk t ≤ 1.
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The first classification theorem
The classification theorem for RC linear maps

Next, one applies the classification of vector spaces of matrices
with rank at most 1.

Remark 1: No non-zero vector of S⊥ annihilates all the
operators in Ŝ⊥.

Remark 2: dimS⊥ ≥ 2.

→ there is a line D ⊂ U that includes the range of every
operator in Ŝ⊥;
→ Im t ⊂ D for all t ∈ S⊥. Write D = Kx1 and extend x1 into
(x1, . . . , xp) basis of U;
→ S represented by W

∐
Mn,p−1(K) for some W ⊂ K

n;

Hence, by splitting every RC linear map on S is local. QED.
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The first classification theorem
The classification theorem for RC linear maps

Completing the proof

Assume that F : S → V non-local RC linear map.
We can find linearly independent good vectors y1, y2, y3. By
induction, each F mod yi map is local, yielding x1, x2, x3 s.t.

∀i ,∀s, F (s) = s(xi ) mod Kyi .

If xi = xj for some distinct i , j then F : s 7→ s(xi). Hence,
x1, x2, x3 pairwise 6=.
WLOG x3 = 0 (replace F with s 7→ F (s)− s(x3)).
Then, x1 6= 0, x2 6= 0 and x1 6= x2. Note that

∀s ∈ S,





s(x1) ∈ Vect(y1, y3)

s(x2) ∈ Vect(y2, y3)

s(x1 − x2) ∈ Vect(y1, y2).
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If x1, x2 collinear then s(x1) = s(x2) = 0 for all s ∈ S, and then
F = 0.
Hence, x1, x2 non-collinear.
Consider bases B = (x1, x2, · · · ) and C := (y1, y2, y3, · · · ). In
them, operators in S represented by matrices of type




a 0 [?]1×(p−2)
0 c [?]1×(p−2)

b b [?]1×(p−2)

[0](n−3)×1 [0](n−3)×1 [0](n−3)×(p−2)


 .

That matrix space has codimension 2n − 3 in Mn,p(K)!
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The classification theorem for RC linear maps

Then, F corresponds to




a 0 [?]1×(p−2)

0 c [?]1×(p−2)

b b [?]1×(p−2)
[0](n−3)×1 [0](n−3)×1 [0](n−3)×(p−2)


 7−→




0
0
b

[0](n−3)×1


 .

Then, 


a 0
0 c
b b


 7→




0
0
b




would be RC! Yet a = b = c = 1 shows that this fails. QED.
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