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Quadratic objects

Setting: F an arbitrary field, A an F-algebra (unital, associative).

x ∈ A is quadratic iff

∃(α, β) ∈ F
2 : x2 = α 1A + β x .

i.e. x annihilated by p(t) ∈ F[t] of degree 2.

For p ∈ F[t] of degree 2,

x ∈ A is p-quadratic iff p(x) = 0.
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Examples of quadratic objects

Idempotents x2 = x

Involutions x2 = 1A

Square-zero elements x2 = 0A

Unipotent elements of index 2 (x − 1A)
2 = 0A

Quarter turns x2 = −1A
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Very general decomposition problems (1)

Let r ≥ 1 and p1, . . . ,pr ∈ F[t] all monic w/ degree 2.

Definition

x ∈ A is a (p1, . . . ,pr )-sum when

∃(a1, . . . ,ar ) ∈ Ar : x = a1 + · · ·+ ar

and
p1(a1) = 0, p2(a2) = 0, . . . pr (ar ) = 0.

Remark: Set of all (p1, . . . ,pr )-sums stable under conjugation
x 7→ axa−1 in A for all a ∈ A×.

Q: Can we characterize the (p1, . . . ,pr )-sums?

Remark: This could require a precise knowledge of conjugacy
classes in A!

Clément de Seguins Pazzis Decomposing matrices into quadratic ones



Very general decomposition problems (2)

Let r ≥ 1 and p1, . . . ,pr ∈ F[t] all monic w/ degree 2.

Definition

x ∈ A is a (p1, . . . ,pr )-product when

∃(a1, . . . ,ar ) ∈ Ar : x = a1a2 · · · ar

and
p1(a1) = 0, p2(a2) = 0, . . . pr (ar ) = 0.

Remark: Set of all (p1,p2, . . . ,pr )-products stable under
conjugation x 7→ axa−1 in A for all a ∈ A×.

Q: Can we characterize the (p1,p2, . . . ,pr )-products?

Non-degenerate case: p1(0)p2(0) · · · pr (0) 6= 0.
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A rare general solution: products of idempotents!

Q: With r ≥ 1 fixed, which M ∈ Mn(F) decompose as

M = P1 · · ·Pr with P1, . . . ,Pr idempotents?

(i.e. (t2 − t , . . . , t2 − t)-products).

A: (C.S. Ballantine, 1978): necessary and sufficient condition:

rank(M − I) ≤ r dimKerM.

Idea for necessity: if rkM is large, then dimKer(Pi − I) = rkPi is large,
and hence

⋂

i
Ker(Pi − I) ⊂ Ker(M − I) has large dimension.

A: (J. Erdos, 1967) Matrices that are products of idempotents
(unspecified number of factors): I and singular matrices.
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Sums of idempotents - unlimited number of summands

Q: Which M ∈ Mn(F) decompose as

M = P1 + · · ·+ Pr with P1, . . . ,Pr idempotents?

(r unlimited)

A: (P.-Y. Wu, 1990) fields of characteristic 0.
Necessary and sufficient condition:

trM ∈ Z and rankM ≤ trM

A: (fields of characteristic p > 0). Necessary and sufficient
condition: trM = k .1F with k ∈ Z.
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Sums of idempotents - fixed number of summands

Q: With r fixed, which M ∈ Mn(F) decompose as

M = P1 + · · ·+ Pr with P1, . . . ,Pr idempotents?

Answer unknown for general r !

A: (J.-H. Wang, 1995) Solution for complex
matrices of small size.

Some results for fields of positive characteristic (dSP, 2010)
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Sums of idempotents - few summands

• 2 summands: R. Hartwig and M. Putcha (1990) over C
(more generally, alg. closed field F with χ(F) 6= 2).
Characterization in terms of the Jordan normal form.

• Generalized to all fields (dSP, 2010).

• 3 summands: no known characterization!
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Products of involutions in GLn(F)

M ∈ GLn(F) is a product of involutions iff detM = ±1
(very old result!)

Q: Least number of necessary factors in general?
A: Four! (Gustafson, Halmos and Radjavi - 1976)

Counter-example for 3 factors:
αIn where α ∈ C s.t. αn = ±1 and α4 6= 1.

Products of 3 involutions: no known characterization
(“Halmos problem").
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Products of 2 involutions in GLn(F)

M ∈ GLn(F) product of two involutions iff

∃P ∈ GLn(F) : M−1 = PMP−1

(Wonenburger, Djokovic ; 1966-1967).

Remark: in a group G, if g = ab with a2 = b2 = 1, then

g−1 = b−1a−1 = ba = b(ab)b−1 = bgb−1.
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Sums of square-zero matrices

Q: Which matrices are sums of square-zero matrices?
A: Matrices M with trM = 0.

Q: How many summands at most?
A: Four suffice! (Wang and Wu - 1991)

3 summands do not suffice in general

Characterization of sums of 3 square-zero matrices:
hopeless in general
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Sums of 2 square-zero matrices

Q: Which matrices are sums of 2 square-zero matrices?

A1: (Wang-Wu-Botha) If χ(F) 6= 2, the matrices M such that

∃P ∈ GLn(F) : −M = PMP−1.

A2: (J.D. Botha, 2012) For general fields,
matrices M that have the exchange property.
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Sums of 2 square-zero matrices (continued):
Exchange property

u ∈ End(V ) has the exchange property iff

∃V1,V2 : V = V1 ⊕ V2, u(V1) ⊂ V2 and u(V2) ⊂ V1.

V1 V2

u

u

0
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Back to the general problem

Q: Is characterizing (p1, . . . ,pr )-sums (or products) feasible in
general?
A: No!

Q: Are there general methods?
A: Yes.

Q: What is the state of the art for the general case?
A: The complete solution for r = 2 (sums and products alike)
(dSP, 2017)! Complete . . . up to the degenerate case for
products (minor issue).
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Why r = 2 is interesting?

A1: Challenging problem!

Uses a wide variety of normal forms.

Nontrivial problem, surprising results.

A2: Seems indispensable for decompositions of small length.
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Some applications of the case r = 2

→ Every M ∈ GLn(F) with detM = ±1 is the product of 4
involutions.
Decomposes M = AB where A,B are products of two
involutions.

→ Every matrix M ∈ Mn(C) with trace 0 is the sum of 4
square-zero matrices (Wang-Wu; 1991).
Split M = A + B with A and B the sum of two square-zero.

→ Every matrix M ∈ Mn(F) is a linear combination of 3
idempotents. (dSP; 2010)
Requires a fine knowledge of matrices of the form αP + βQ,
with α, β fixed (6= 0), and P,Q variable idempotents. Amounts
to consider (t2 − αt , t2 − βt)-sums.
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Some applications of the case r = 2 (continued):
stable results

→ Let M ∈ Mn(F) with trM = 0.

Then
[

M 0n

0n 0n

]

is the sum of 3 square-zero matrices! (dSP,

2017)

→ Let M ∈ GLn(F) with detM = ±1.

Then
[

M 0n

0n In

]

is the product of 3 involutions! (dSP, 2019)
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Main ideas for the r = 2 problem

Here

p(t) = t2 − (tr p) t + p(0) and q(t) = t2 − (tr q) t + q(0).

Problem: characterize the (p,q)-sums (w/ invariant factors)

Five main ideas:
1 Sums of roots of p and q.

2 Regular/exceptional dichotomy.

3 Commutation trick.

4 Invariant factors for regular (p,q)-sums.

5 Construction of “simple" exceptional (p,q)-sums?
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Sums of roots of p and q (1)

Split p(t) = (t − x1)(t − x2) and q(t) = (t − y1)(t − y2) in F[t].

x1 + y1

x2 + y2x1 + y2

x2 + y1

σ/2
z

s(z) = σ − z

Important object: σ := x1 + x2 + y1 + y2 = tr(p) + tr(q) ∈ F.
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Sums of roots of p and q (2)

Rough idea: If u is a (p,q)-sum, then
Sp(u) \ (Root(p) + Root(q)) invariant under s (and same Jordan
cells for z and s(z)).
Yet:

This condition is not sufficient.

Additional nontrivial condition if s(z) = z and
z 6∈ Root(p) + Root(q).

Eigenvalues in Root(p) + Root(q) can fail to have the
symmetry property.

“Quasi-symmetry" between Jordan cells of z and s(z) if
z ∈ Root(p) + Root(q).
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Regular/exceptional dichotomy (1)

Let u ∈ End(V ) (V vector space of finite dimension).

u regular (w/ respect to (p,q)) when it has no eigenvalue
in Root(p) + Root(q) (in F)

u exceptional (w/ respect to (p,q)) when it has all its
eigenvalues in Root(p) + Root(q) (in F).

Basic principle: unique splitting

u = ur ⊕ ue

with ur regular and ue exceptional.

Idea: Fitting decomposition of Fp,q(u) where

Fp,q(t) :=
∏

i ,j

(t − (xi + yj)) ∈ F[t].
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Regular/exceptional dichotomy (2)

Theorem

Let u ∈ End(V ). Then u is a (p,q)-sum iff both ur and ue are
(p,q)-sums.

Proof. If u = a + b where p(a) = q(b) = 0, then:

a and b commute with Fp,q(u) (to be explained later);

a and b stabilize the Fitting decomposition of Fp,q(u);

resulting endomorphisms yield that ur and ue are
(p,q)-sums.

Warning: in general a (p,q)-sum can split u = u1 ⊕ u2 without
u1 and u2 being (p,q)-sums.

Basic example:
[

1 0
0 −1

]

is a (t2, t2)-sum but not
[

1
]

!
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Commutation trick (1)

In an F-algebra A, let a,b with p(a) = q(b) = 0. Quadratic
conjugates:

a⋆ = (tr p)1A − a and b⋆ = (tr q)1 − b,

so that

aa⋆ = a⋆a = p(0)1A and bb⋆ = b⋆b = q(0)1A.

Note that p(a⋆) = q(b⋆) = 0.

An important element:

ab⋆ + ba⋆ = (tr q)a + (tr p)b − (ab + ba) = b⋆a + a⋆b.

Lemma (Commutation lemma)

a and b commute with ab⋆ + ba⋆.
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Commutation trick (2)

Pseudo-conjugate of u = a + b:

u⋆ := a⋆ + b⋆ = σ 1A − u

Pseudo-norm of u:

uu⋆ = ab⋆ + ba⋆ + aa⋆ + bb⋆ = ab⋆ + ba⋆ + (p(0) + q(0))1A

commutes w/ a and b.
That is, u(u − σ1A) commutes w/ a,b.

Application:

Fp,q(t) =
∏

i ,j

(t − xi − yj) = Q(t2 − σt)

for

Q =
(

t + (x1 + y1)(x2 + y2)
)(

t + (x1 + y2)(x2 + y1)
)

∈ F[t].

Conclusion: a and b commute with Fp,q(u).
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Regular (p, q)-sums: a necessary condition (1)

Frobenius normal form.
Companion matrix of monic polynomial r(t) = tn −

∑n−1
k=0 ak tk :

C(r) =

















0 (0) a0

1 0 a1

0
. . . . . .

...
...

. . . 0 an−2

(0) · · · 0 1 an−1

















∈ Mn(F)

Theorem (Frobenius)

Let u ∈ End(V ) (V vector space of finite dimension). Then u
represented by block-diagonal C(R1)⊕ · · · ⊕ C(Rs) for a unique
list (R1, . . . ,Rs) of monic polynomials s.t. Ri+1 divides Ri .
R1, . . . ,Rs: the invariant factors of u.
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Regular (p, q)-sums: a necessary condition (2)

Theorem

Let u ∈ End(V ) regular (p,q)-sum. Then each invariant factor
of u reads R(t2 − σt).

Starting idea of proof for alg. closed fields: if u = a + b with
p(a) = q(b) = 0 then a,b have no common eigenvector.

Remark: M := C(R(t2 − σt)) always similar to σI − M.

Condition sufficient when p or q has a root in F; not in general!
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Regular (p, q)-sums: a necessary condition (3)

Counterexample for sufficiency: p = q = t2 + 1 over reals.

The companion matrix M := C(t2 + 2) is not a (p,q)-sum!

Otherwise M = A + B with A2 = B2 = −I, hence

M2 = (A + B)2 = A2 + B2 + AB + BA = −2I + AB + BA

and so
BA = −AB.

Then R[A,B] isomorphic to H (quaternions).
→ Structure of left H-vector space on R

2!
Impossible (dimension constraints)!
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Regular (p, q)-sums: necessary and sufficient
condition

The full characterization of regular (p,q)-sums (dSP 2017)
requires deep results on quaternion algebras , a
generalization of quaternions . . .
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Exceptional (p, q)-sums: the basic construction (1)

Old trick (dates back to Hartwig, Putcha, Wang, Wu).

Assume p,q split over F.

First matrix:

A =























[

x1 0

1 x2

]

⊕

[

x1 0

1 x2

]

⊕ · · · ⊕

[

x1 0

1 x2

]

(n even)
[

x1 0

1 x2

]

⊕

[

x1 0

1 x2

]

⊕ · · · ⊕

[

x1 0

1 x2

]

⊕
[

x1

]

(n odd)

Second matrix:

B =























[

y1

]

⊕

[

y2 0

1 y1

]

⊕ · · · ⊕

[

y2 0

1 y1

]

⊕
[

y2

]

(n even)

[

y1

]

⊕

[

y2 0

1 y1

]

⊕ · · · ⊕

[

y2 0

1 y1

]

⊕

[

y2 0

1 y1

]

(n odd)
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Exceptional (p, q)-sums: the basic construction (2)

A + B =



























x1 + y1 (0)
1 x2 + y2

0 1 x1 + y1
... 0 1

. . .
...

. . . . . .
. . .

(0) · · · · · · 0 1 ?
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Exceptional (p, q)-sums: the basic construction (3)

Set
z1 := x1 + y1 and z2 := x2 + y2,

n = 2q + ε (Euclidean division).

Then
A + B ≃ C((t − z1)

q+ε(t − z2)
q)

If z1 = z2 then

A + B ≃ Jn(z1) (Jordan cell).

If z1 6= z2, then

A + B ≃ Jq+ε(z1)⊕ Jq(z2).
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What about products?

Assume p(0)q(0) 6= 0 (non-degenerate case).
Correspondence table:

(p,q)-sums (p,q)-products

xi + yj xiyj

σ := x1 + x2 + y1 + y2 π := x1x2y1y2 = p(0)q(0)
z 7→ σ − z (symmetry) z 7→ πz−1 (inversion)

u = a + b u = ab
u⋆ = a⋆ + b⋆ u⋆ = b⋆a⋆ = π u−1

uu⋆ u + u⋆ = a(b⋆)⋆ + (b⋆)a⋆

R(t2 − σt) td R(t + πt−1) where d = degR
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Is it all over for r = 2?

Two possible directions of further research:

endomorphisms of infinite-dimensional vector spaces;

the “double-quadratic" problem.
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Endomorphisms of infinite-dimensional spaces

Theorem (Breaz, Shitov, de Seguins Pazzis, (2016-2018))

Let V vector space of infinite dimension. Let p1,p2,p3,p4 ∈ F[t]
all split, monic w/ degree 2.
Every u ∈ End(V ) is a (p1,p2,p3,p4)-sum!
If (p1p2p3p4)(0) 6= 0, every u ∈ GL(V ) a (p1,p2,p3,p4)-product!

Open problem: can some or all the pi ’s be irreducible?

3 summands/factors: completed for the reasonable cases,
probably little room for improvement

2 summands/factors: probably intractable without drastic
assumptions on u
(V countable dimensional and u locally finite).
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The quadratic-quadratic problem for sums

Equip V (vector space of finite dimension with χ(F) 6= 2) with
non-degenerate (symmetric or skewsymmetric) bilinear form

B : V × V → F

Every u ∈ End(V ) has a B-adjoint u•:

∀(x , y) ∈ V 2, B(u•(x), y) = B(x ,u(y)).

Let p,q ∈ F[t] (with degree 2).

Quadratic-quadratic problem for sums: characterize the
B-selfadjoint u s.t.

∃ B-selfadjoint a,b : u = a + b and p(a) = q(b) = 0.

Example: sum of two orthogonal projections!
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The quadratic-quadratic problem for sums and
products

Same issue for skew-selfadjoint elements.

Quadratic-quadratic problem for products: characterize the
(p,q)-products in Isom(B).

Same issues for Hermitian forms:

sums of selfadjoints

products of unitaries
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The quadratic-quadratic problem: the state of the art

Decomposition Context Author (year)

Products of 2 involutions Orthogonal groups Wonenburger
(1966)

Products of 2 involutions Symplectic groups Nielsen
(unpublished)

Sums of 2 square-zeros Selfadjoints or dSP
skew-selfadjoints (in preparation)

Products of 2 unipotents Orthogonal or dSP
of index 2 symplectic groups (in preparation)

All (p,q)-sums Selfadjoints dSP
symplectic form (in preparation)
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Conclusion

Much remains to be done!
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