Decomposing matrices into quadratic ones

Clément de Seguins Pazzis

Université de Versailles Saint-Quentin-en-Yvelines (France)

ILAS 2022, NUI Galway

Quadratic objects

Setting: \mathbb{F} an arbitrary field, \mathcal{A} an \mathbb{F}-algebra (unital, associative).
$x \in \mathcal{A}$ is quadratic iff

$$
\exists(\alpha, \beta) \in \mathbb{F}^{2}: x^{2}=\alpha 1_{\mathcal{A}}+\beta \boldsymbol{x} .
$$

i.e. x annihilated by $p(t) \in \mathbb{F}[t]$ of degree 2 .

For $p \in \mathbb{F}[t]$ of degree 2,
$x \in \mathcal{A}$ is p-quadratic iff $p(x)=0$.

Examples of quadratic objects

Idempotents	$x^{2}=x$
Involutions	$x^{2}=1_{\mathcal{A}}$
Square-zero elements	$x^{2}=0_{\mathcal{A}}$
Unipotent elements of index 2	$\left(x-1_{\mathcal{A}}\right)^{2}=0_{\mathcal{A}}$
Quarter turns	$x^{2}=-1_{\mathcal{A}}$

Very general decomposition problems (1)

Let $r \geq 1$ and $p_{1}, \ldots, p_{r} \in \mathbb{F}[t]$ all monic $w /$ degree 2 .

Definition

$x \in \mathcal{A}$ is a $\left(p_{1}, \ldots, p_{r}\right)$-sum when

$$
\exists\left(a_{1}, \ldots, a_{r}\right) \in \mathcal{A}^{r}: x=a_{1}+\cdots+a_{r}
$$

and

$$
p_{1}\left(a_{1}\right)=0, p_{2}\left(a_{2}\right)=0, \quad \ldots \quad p_{r}\left(a_{r}\right)=0
$$

Remark: Set of all $\left(p_{1}, \ldots, p_{r}\right)$-sums stable under conjugation $x \mapsto a x a^{-1}$ in \mathcal{A} for all $a \in \mathcal{A}^{\times}$.

Q: Can we characterize the $\left(p_{1}, \ldots, p_{r}\right)$-sums?
Remark: This could require a precise knowledge of conjugacy classes in \mathcal{A} !

Very general decomposition problems (2)

Let $r \geq 1$ and $p_{1}, \ldots, p_{r} \in \mathbb{F}[t]$ all monic $w /$ degree 2.

Definition

$x \in \mathcal{A}$ is a $\left(p_{1}, \ldots, p_{r}\right)$-product when

$$
\exists\left(a_{1}, \ldots, a_{r}\right) \in \mathcal{A}^{r}: x=a_{1} a_{2} \cdots a_{r}
$$

and

$$
p_{1}\left(a_{1}\right)=0, p_{2}\left(a_{2}\right)=0, \quad \ldots \quad p_{r}\left(a_{r}\right)=0
$$

Remark: Set of all $\left(p_{1}, p_{2}, \ldots, p_{r}\right)$-products stable under conjugation $x \mapsto a x a^{-1}$ in \mathcal{A} for all $a \in \mathcal{A}^{\times}$.

Q: Can we characterize the $\left(p_{1}, p_{2}, \ldots, p_{r}\right)$-products?
Non-degenerate case: $p_{1}(0) p_{2}(0) \cdots p_{r}(0) \neq 0$.

A rare general solution: products of idempotents!

Q: With $r \geq 1$ fixed, which $M \in \mathrm{M}_{n}(\mathbb{F})$ decompose as

$$
M=P_{1} \ldots P_{r} \quad \text { with } P_{1}, \ldots, P_{r} \text { idempotents? }
$$

(i.e. $\left(t^{2}-t, \ldots, t^{2}-t\right)$-products).

A: (C.S. Ballantine, 1978): necessary and sufficient condition:

$$
\operatorname{rank}(M-I) \leq r \operatorname{dim} \operatorname{Ker} M .
$$

Idea for necessity: if rk M is large, then $\operatorname{dim} \operatorname{Ker}\left(P_{i}-I\right)=r k P_{i}$ is large, and hence $\bigcap_{i} \operatorname{Ker}\left(P_{i}-I\right) \subset \operatorname{Ker}(M-I)$ has large dimension.

A: (J. Erdos, 1967) Matrices that are products of idempotents (unspecified number of factors): I and singular matrices.

Sums of idempotents - unlimited number of summands

Q: Which $M \in M_{n}(\mathbb{F})$ decompose as

$$
M=P_{1}+\cdots+P_{r} \quad \text { with } P_{1}, \ldots, P_{r} \text { idempotents? }
$$

(r unlimited)

A: (P.-Y. Wu, 1990) fields of characteristic 0. Necessary and sufficient condition:

$$
\operatorname{tr} M \in \mathbb{Z} \quad \text { and } \quad \operatorname{rank} M \leq \operatorname{tr} M
$$

A: (fields of characteristic $p>0$). Necessary and sufficient condition: $\operatorname{tr} M=k .1_{\mathbb{F}}$ with $k \in \mathbb{Z}$.

Sums of idempotents - fixed number of summands

Q: With r fixed, which $M \in M_{n}(\mathbb{F})$ decompose as

$$
M=P_{1}+\cdots+P_{r} \quad \text { with } P_{1}, \ldots, P_{r} \text { idempotents? }
$$

Answer unknown for general r !

A: (J.-H. Wang, 1995) Solution for complex matrices of small size.

Some results for fields of positive characteristic (dSP, 2010)

Sums of idempotents - few summands

- 2 summands: R. Hartwig and M. Putcha (1990) over \mathbb{C} (more generally, alg. closed field \mathbb{F} with $\chi(\mathbb{F}) \neq 2$). Characterization in terms of the Jordan normal form.

- Generalized to all fields (dSP, 2010).
- 3 summands: no known characterization!

Products of involutions in $\mathrm{GL}_{n}(\mathbb{F})$

$M \in G L_{n}(\mathbb{F})$ is a product of involutions iff $\operatorname{det} M= \pm 1$ (very old result!)

Q: Least number of necessary factors in general?
A: Four! (Gustafson, Halmos and Radjavi - 1976)

Counter-example for 3 factors:
αI_{n} where $\alpha \in \mathbb{C}$ s.t. $\alpha^{n}= \pm 1$ and $\alpha^{4} \neq 1$.
Products of 3 involutions: no known characterization
("Halmos problem").

Products of 2 involutions in $\mathrm{GL}_{n}(\mathbb{F})$

$M \in G L_{n}(\mathbb{F})$ product of two involutions iff

$$
\exists P \in \mathrm{GL}_{n}(\mathbb{F}): M^{-1}=P M P^{-1}
$$

(Wonenburger, Djokovic ; 1966-1967).

Remark: in a group G, if $g=a b$ with $a^{2}=b^{2}=1$, then

$$
g^{-1}=b^{-1} a^{-1}=b a=b(a b) b^{-1}=b g b^{-1}
$$

Sums of square-zero matrices

Q: Which matrices are sums of square-zero matrices?
A: Matrices M with $\operatorname{tr} M=0$.
Q: How many summands at most?
A: Four suffice! (Wang and Wu - 1991)
3 summands do not suffice in general
Characterization of sums of 3 square-zero matrices: hopeless in general

Sums of 2 square-zero matrices

Q: Which matrices are sums of 2 square-zero matrices?
A1: (Wang-Wu-Botha) If $\chi(\mathbb{F}) \neq 2$, the matrices M such that

$$
\exists P \in \mathrm{GL}_{n}(\mathbb{F}):-M=P M P^{-1} .
$$

A2: (J.D. Botha, 2012) For general fields, matrices M that have the exchange property.

Sums of 2 square-zero matrices (continued): Exchange property

$u \in \operatorname{End}(V)$ has the exchange property iff

$$
\exists V_{1}, V_{2}: V=V_{1} \oplus V_{2}, \quad u\left(V_{1}\right) \subset V_{2} \quad \text { and } \quad u\left(V_{2}\right) \subset V_{1} .
$$

Back to the general problem

Q: Is characterizing (p_{1}, \ldots, p_{r})-sums (or products) feasible in general?
A: No!

Q: Are there general methods?
A: Yes.

Q: What is the state of the art for the general case?
A: The complete solution for $r=2$ (sums and products alike) (dSP, 2017)! Complete ... up to the degenerate case for products (minor issue).

Why $r=2$ is interesting?

A1: Challenging problem!

- Uses a wide variety of normal forms.
- Nontrivial problem, surprising results.

A2: Seems indispensable for decompositions of small length.

Some applications of the case $r=2$

\rightarrow Every $M \in \mathrm{GL}_{n}(\mathbb{F})$ with $\operatorname{det} M= \pm 1$ is the product of 4 involutions.
Decomposes $M=A B$ where A, B are products of two involutions.
\rightarrow Every matrix $M \in M_{n}(\mathbb{C})$ with trace 0 is the sum of 4 square-zero matrices (Wang-Wu; 1991).
Split $M=A+B$ with A and B the sum of two square-zero.
\rightarrow Every matrix $M \in M_{n}(\mathbb{F})$ is a linear combination of 3 idempotents. (dSP; 2010)
Requires a fine knowledge of matrices of the form $\alpha P+\beta Q$, with α, β fixed $(\neq 0)$, and P, Q variable idempotents. Amounts to consider $\left(t^{2}-\alpha t, t^{2}-\beta t\right)$-sums.

Some applications of the case $r=2$ (continued): stable results

\rightarrow Let $M \in \mathrm{M}_{n}(\mathbb{F})$ with $\operatorname{tr} M=0$.
Then $\left[\begin{array}{ll}M & 0_{n} \\ 0_{n} & 0_{n}\end{array}\right]$ is the sum of 3 square-zero matrices! (dSP, 2017)
\rightarrow Let $M \in \mathrm{GL}_{n}(\mathbb{F})$ with $\operatorname{det} M= \pm 1$.
Then $\left[\begin{array}{ll}M & 0_{n} \\ 0_{n} & I_{n}\end{array}\right]$ is the product of 3 involutions! (dSP, 2019)

Main ideas for the $r=2$ problem

Here

$$
p(t)=t^{2}-(\operatorname{tr} p) t+p(0) \quad \text { and } \quad q(t)=t^{2}-(\operatorname{tr} q) t+q(0) .
$$

Problem: characterize the (p, q)-sums (w/invariant factors)

Five main ideas:

(1) Sums of roots of p and q.
(2) Regular/exceptional dichotomy.
(3) Commutation trick.
(3) Invariant factors for regular (p, q)-sums.
© Construction of "simple" exceptional (p, q)-sums?

Sums of roots of p and $q(1)$

Split $p(t)=\left(t-x_{1}\right)\left(t-x_{2}\right)$ and $q(t)=\left(t-y_{1}\right)\left(t-y_{2}\right)$ in $\overline{\mathbb{F}}[t]$.

Important object: $\sigma:=x_{1}+x_{2}+y_{1}+y_{2}=\operatorname{tr}(p)+\operatorname{tr}(q) \in \mathbb{F}$.

Sums of roots of p and q (2)

Rough idea: If u is a (p, q)-sum, then
$\operatorname{Sp}(u) \backslash(\operatorname{Root}(p)+\operatorname{Root}(q))$ invariant under s (and same Jordan cells for z and $s(z)$).
Yet:

- This condition is not sufficient.
- Additional nontrivial condition if $s(z)=z$ and $z \notin \operatorname{Root}(p)+\operatorname{Root}(q)$.
- Eigenvalues in $\operatorname{Root}(p)+\operatorname{Root}(q)$ can fail to have the symmetry property.
- "Quasi-symmetry" between Jordan cells of z and $s(z)$ if $z \in \operatorname{Root}(p)+\operatorname{Root}(q)$.

Regular/exceptional dichotomy (1)

Let $u \in \operatorname{End}(V)$ (V vector space of finite dimension).

- u regular (w/ respect to $(p, q))$ when it has no eigenvalue in $\operatorname{Root}(p)+\operatorname{Root}(q)$ (in $\overline{\mathbb{F}}$)
- u exceptional ($\mathrm{w} /$ respect to (p, q)) when it has all its eigenvalues in $\operatorname{Root}(p)+\operatorname{Root}(q)$ (in $\overline{\mathbb{F}}$).

Basic principle: unique splitting

$$
u=u_{r} \oplus u_{e}
$$

with u_{r} regular and u_{e} exceptional.
Idea: Fitting decomposition of $F_{p, q}(u)$ where

$$
F_{p, q}(t):=\prod_{i, j}\left(t-\left(x_{i}+y_{j}\right)\right) \in \mathbb{F}[t] .
$$

Regular/exceptional dichotomy (2)

Theorem

Let $u \in \operatorname{End}(V)$. Then u is a (p, q)-sum iff both u_{r} and u_{e} are (p, q)-sums.

Proof. If $u=a+b$ where $p(a)=q(b)=0$, then:

- a and b commute with $F_{p, q}(u)$ (to be explained later);
- a and b stabilize the Fitting decomposition of $F_{p, q}(u)$;
- resulting endomorphisms yield that u_{r} and u_{e} are (p, q)-sums.

Warning: in general a (p, q)-sum can split $u=u_{1} \oplus u_{2}$ without u_{1} and u_{2} being (p, q)-sums.
Basic example: $\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$ is a $\left(t^{2}, t^{2}\right)$-sum but not [1]!

Commutation trick (1)

In an \mathbb{F}-algebra \mathcal{A}, let a, b with $p(a)=q(b)=0$. Quadratic conjugates:

$$
a^{\star}=(\operatorname{tr} p) 1_{\mathcal{A}}-a \quad \text { and } \quad b^{\star}=(\operatorname{tr} q) 1-b
$$

so that

$$
a a^{\star}=a^{\star} a=p(0) 1_{\mathcal{A}} \quad \text { and } \quad b b^{\star}=b^{\star} b=q(0) 1_{\mathcal{A}} .
$$

Note that $p\left(a^{\star}\right)=q\left(b^{\star}\right)=0$.
An important element:

$$
a b^{\star}+b a^{\star}=(\operatorname{tr} q) a+(\operatorname{tr} p) b-(a b+b a)=b^{\star} a+a^{\star} b
$$

Lemma (Commutation lemma)

 a and b commute with $a b^{\star}+b a^{\star}$.
Commutation trick (2)

Pseudo-conjugate of $u=a+b$:

$$
u^{\star}:=a^{\star}+b^{\star}=\sigma 1_{\mathcal{A}}-u
$$

Pseudo-norm of u :

$$
u u^{\star}=a b^{\star}+b a^{\star}+a a^{\star}+b b^{\star}=a b^{\star}+b a^{\star}+(p(0)+q(0)) 1_{\mathcal{A}}
$$

commutes w / a and b.
That is, $u\left(u-\sigma 1_{\mathcal{A}}\right)$ commutes $\mathrm{w} / a, b$.
Application:

$$
F_{p, q}(t)=\prod_{i, j}\left(t-x_{i}-y_{j}\right)=Q\left(t^{2}-\sigma t\right)
$$

for

$$
Q=\left(t+\left(x_{1}+y_{1}\right)\left(x_{2}+y_{2}\right)\right)\left(t+\left(x_{1}+y_{2}\right)\left(x_{2}+y_{1}\right)\right) \in \mathbb{F}[t] .
$$

Conclusion: a and b commute with $F_{p, q}(u)$.

Regular (p, q)-sums: a necessary condition (1)

Frobenius normal form.

Companion matrix of monic polynomial $r(t)=t^{n}-\sum_{k=0}^{n-1} a_{k} t^{k}$:

$$
C(r)=\left[\begin{array}{ccccc}
0 & & & (0) & a_{0} \\
1 & 0 & & & a_{1} \\
0 & \ddots & \ddots & & \vdots \\
\vdots & \ddots & & 0 & a_{n-2} \\
(0) & \cdots & 0 & 1 & a_{n-1}
\end{array}\right] \in \mathrm{M}_{n}(\mathbb{F})
$$

Theorem (Frobenius)

Let $u \in \operatorname{End}(V)$ (V vector space of finite dimension). Then u represented by block-diagonal $C\left(R_{1}\right) \oplus \cdots \oplus C\left(R_{s}\right)$ for a unique list $\left(R_{1}, \ldots, R_{s}\right)$ of monic polynomials s.t. R_{i+1} divides R_{i}. R_{1}, \ldots, R_{s} : the invariant factors of u.

Regular (p, q)-sums: a necessary condition (2)

Theorem

Let $u \in \operatorname{End}(V)$ regular (p, q)-sum. Then each invariant factor of u reads $R\left(t^{2}-\sigma t\right)$.

Starting idea of proof for alg. closed fields: if $u=a+b$ with $p(a)=q(b)=0$ then a, b have no common eigenvector.

Remark: $M:=C\left(R\left(t^{2}-\sigma t\right)\right)$ always similar to $\sigma I-M$.

Condition sufficient when p or q has a root in \mathbb{F}; not in general!

Regular (p, q)-sums: a necessary condition (3)

Counterexample for sufficiency: $p=q=t^{2}+1$ over reals.
The companion matrix $M:=C\left(t^{2}+2\right)$ is not a (p, q)-sum!
Otherwise $M=A+B$ with $A^{2}=B^{2}=-I$, hence

$$
M^{2}=(A+B)^{2}=A^{2}+B^{2}+A B+B A=-2 I+A B+B A
$$

and so

$$
B A=-A B .
$$

Then $\mathbb{R}[A, B]$ isomorphic to \mathbb{H} (quaternions).
\rightarrow Structure of left \mathbb{H}-vector space on \mathbb{R}^{2} !
Impossible (dimension constraints)!

Regular (p, q)-sums: necessary and sufficient condition

The full characterization of regular (p, q)-sums (dSP 2017) requires deep results on quaternion algebras, a generalization of quaternions ...

Exceptional (p, q)-sums: the basic construction (1)

Old trick (dates back to Hartwig, Putcha, Wang, Wu).
Assume p, q split over \mathbb{F}.
First matrix:
$A= \begin{cases}{\left[\begin{array}{cc}x_{1} & 0 \\ 1 & x_{2}\end{array}\right] \oplus\left[\begin{array}{cc}x_{1} & 0 \\ 1 & x_{2}\end{array}\right] \oplus \cdots \oplus\left[\begin{array}{cc}x_{1} & 0 \\ 1 & x_{2}\end{array}\right]} & \text { (n even) } \\ {\left[\begin{array}{cc}x_{1} & 0 \\ 1 & x_{2}\end{array}\right] \oplus\left[\begin{array}{cc}x_{1} & 0 \\ 1 & x_{2}\end{array}\right] \oplus \cdots \oplus\left[\begin{array}{cc}x_{1} & 0 \\ 1 & x_{2}\end{array}\right] \oplus\left[x_{1}\right]} & (n \text { odd })\end{cases}$
Second matrix:

$$
B= \begin{cases}{\left[y_{1}\right] \oplus\left[\begin{array}{cc}
y_{2} & 0 \\
1 & y_{1}
\end{array}\right] \oplus \cdots \oplus\left[\begin{array}{cc}
y_{2} & 0 \\
1 & y_{1} \\
y_{2} & 0 \\
1 & y_{1}
\end{array}\right] \oplus\left[\begin{array}{ll}
y_{2}
\end{array}\right]} & \text { (n even) } \\
{\left[y_{1}\right] \oplus \oplus\left[\begin{array}{cc}
y_{2} & 0 \\
1 & y_{1}
\end{array}\right] \oplus\left[\begin{array}{cc}
y_{2} & 0 \\
1 & y_{1}
\end{array}\right]} & (n \text { odd })\end{cases}
$$

Exceptional (p, q)-sums: the basic construction (2)

$$
A+B=\left[\begin{array}{ccccccc}
x_{1}+y_{1} & & & & & & (0) \\
1 & x_{2}+y_{2} & & & & & \\
0 & 1 & x_{1}+y_{1} & & & & \\
\vdots & 0 & 1 & \ddots & & & \\
\vdots & & & \ddots & \ddots & & \\
& & & & & & \ddots \\
\\
(0) & & \cdots & \cdots & 0 & 1 & ?
\end{array}\right]
$$

Exceptional (p, q)-sums: the basic construction (3)

Set

$$
\begin{gathered}
z_{1}:=x_{1}+y_{1} \quad \text { and } \quad z_{2}:=x_{2}+y_{2} \\
n=2 q+\varepsilon \quad \text { (Euclidean division) }
\end{gathered}
$$

Then

$$
A+B \simeq C\left(\left(t-z_{1}\right)^{q+\varepsilon}\left(t-z_{2}\right)^{q}\right)
$$

If $z_{1}=z_{2}$ then

$$
A+B \simeq J_{n}\left(z_{1}\right) \quad(\text { Jordan cell })
$$

If $z_{1} \neq z_{2}$, then

$$
A+B \simeq J_{q+\varepsilon}\left(z_{1}\right) \oplus J_{q}\left(z_{2}\right)
$$

What about products?

Assume $p(0) q(0) \neq 0$ (non-degenerate case).
Correspondence table:

(p, q)-sums	(p, q)-products
$x_{i}+y_{j}$	$x_{i} y_{j}$
$\sigma:=x_{1}+x_{2}+y_{1}+y_{2}$	$\pi:=x_{1} x_{2} y_{1} y_{2}=p(0) q(0)$
$z \mapsto \sigma-z$ (symmetry)	$z \mapsto \pi z^{-1}$ (inversion)
$u=a+b$	$u=a b$
$u^{\star}=a^{\star}+b^{\star}$	$u^{\star}=b^{\star} a^{\star}=\pi u^{-1}$
$u u^{\star}$	$u+u^{\star}=a\left(b^{\star}\right)^{\star}+\left(b^{\star}\right) a^{\star}$
$R\left(t^{2}-\sigma t\right)$	$t^{d} R\left(t+\pi t^{-1}\right)$ where $d=\operatorname{deg} R$

Is it all over for $r=2$?

Two possible directions of further research:

- endomorphisms of infinite-dimensional vector spaces;
- the "double-quadratic" problem.

Endomorphisms of infinite-dimensional spaces

Theorem (Breaz, Shitov, de Seguins Pazzis, (2016-2018))

Let V vector space of infinite dimension. Let $p_{1}, p_{2}, p_{3}, p_{4} \in \mathbb{F}[t]$ all split, monic w/ degree 2.
Every $u \in \operatorname{End}(V)$ is a $\left(p_{1}, p_{2}, p_{3}, p_{4}\right)$-sum!
If $\left(p_{1} p_{2} p_{3} p_{4}\right)(0) \neq 0$, every $u \in G L(V)$ a $\left(p_{1}, p_{2}, p_{3}, p_{4}\right)$-product!
Open problem: can some or all the p_{i} 's be irreducible?
3 summands/factors: completed for the reasonable cases, probably little room for improvement

2 summands/factors: probably intractable without drastic assumptions on u
(V countable dimensional and u locally finite).

The quadratic-quadratic problem for sums

Equip V (vector space of finite dimension with $\chi(\mathbb{F}) \neq 2$) with non-degenerate (symmetric or skewsymmetric) bilinear form

$$
B: V \times V \rightarrow \mathbb{F}
$$

Every $u \in \operatorname{End}(V)$ has a B-adjoint u^{\bullet} :

$$
\forall(x, y) \in V^{2}, B\left(u^{\bullet}(x), y\right)=B(x, u(y))
$$

Let $p, q \in \mathbb{F}[t]$ (with degree 2).
Quadratic-quadratic problem for sums: characterize the B-selfadjoint u s.t.
$\exists B$-selfadjoint $a, b: u=a+b \quad$ and $\quad p(a)=q(b)=0$.
Example: sum of two orthogonal projections!

The quadratic-quadratic problem for sums and products

Same issue for skew-selfadjoint elements.

Quadratic-quadratic problem for products: characterize the (p, q)-products in Isom(B).

Same issues for Hermitian forms:

- sums of selfadjoints
- products of unitaries

The quadratic-quadratic problem: the state of the art

Decomposition	Context	Author (year)
Products of 2 involutions	Orthogonal groups	Wonenburger (1966)
Products of 2 involutions	Symplectic groups	Nielsen (unpublished)
Sums of 2 square-zeros	Selfadjoints or skew-selfadjoints	dSP (in preparation)
Products of 2 unipotents of index 2	Orthogonal or symplectic groups	dSP (in preparation)
All (p, q)-sums	Selfadjoints symplectic form	dSP (in preparation)

Conclusion

Much remains to be done!

