Decomposing matrices into quadratic ones

Clément de Seguins Pazzis

Université de Versailles Saint-Quentin-en-Yvelines (France)

ILAS 2022, NUI Galway

Quadratic objects

Setting: \mathbb{F} an arbitrary field, \mathcal{A} an \mathbb{F} -algebra (unital, associative).

 $x \in \mathcal{A}$ is quadratic iff

$$\exists (\alpha, \beta) \in \mathbb{F}^2 : \mathbf{x}^2 = \alpha \mathbf{1}_{\mathcal{A}} + \beta \mathbf{x}.$$

i.e. x annihilated by $p(t) \in \mathbb{F}[t]$ of degree 2.

For $p \in \mathbb{F}[t]$ of degree 2,

$$x \in \mathcal{A}$$
 is p -quadratic iff $p(x) = 0$.

Examples of quadratic objects

Idempotents	$x^2 = x$
Involutions	$x^2 = 1_A$
Square-zero elements	$x^2 = 0_A$
Unipotent elements of index 2	$(x-1_{\mathcal{A}})^2=0_{\mathcal{A}}$
Quarter turns	$x^2 = -1_A$

Very general decomposition problems (1)

Let $r \ge 1$ and $p_1, \ldots, p_r \in \mathbb{F}[t]$ all monic w/ degree 2.

Definition

 $x \in \mathcal{A}$ is a (p_1, \dots, p_r) -sum when

$$\exists (a_1,\ldots,a_r) \in \mathcal{A}^r: \ x=a_1+\cdots+a_r$$

and

$$p_1(a_1) = 0, \ p_2(a_2) = 0, \quad \dots \quad p_r(a_r) = 0.$$

Remark: Set of all $(p_1, ..., p_r)$ -sums stable under conjugation $x \mapsto axa^{-1}$ in \mathcal{A} for all $a \in \mathcal{A}^{\times}$.

Q: Can we characterize the (p_1, \ldots, p_r) -sums?

Remark: This could require a precise knowledge of conjugacy classes in \mathcal{A} !

Very general decomposition problems (2)

Let $r \ge 1$ and $p_1, \ldots, p_r \in \mathbb{F}[t]$ all monic w/ degree 2.

Definition

 $x \in \mathcal{A}$ is a (p_1, \dots, p_r) -product when

$$\exists (a_1,\ldots,a_r) \in \mathcal{A}^r: \ x=a_1a_2\cdots a_r$$

and

$$p_1(a_1) = 0, \ p_2(a_2) = 0, \dots p_r(a_r) = 0.$$

Remark: Set of all (p_1, p_2, \dots, p_r) -products stable under conjugation $x \mapsto axa^{-1}$ in \mathcal{A} for all $a \in \mathcal{A}^{\times}$.

Q: Can we characterize the (p_1, p_2, \dots, p_r) -products?

Non-degenerate case: $p_1(0) p_2(0) \cdots p_r(0) \neq 0$.

A rare general solution: products of idempotents!

Q: With $r \geq 1$ *fixed*, which $M \in M_n(\mathbb{F})$ decompose as

$$M = P_1 \cdots P_r$$
 with P_1, \dots, P_r idempotents?

(i.e.
$$(t^2 - t, \dots, t^2 - t)$$
-products).

A: (C.S. Ballantine, 1978): necessary and sufficient condition:

$$rank(M - I) \le r \dim Ker M$$
.

Idea for necessity: if rk M is large, then dim $Ker(P_i - I) = rk P_i$ is large, and hence $\bigcap_i Ker(P_i - I) \subset Ker(M - I)$ has large dimension.

A: (J. Erdos, 1967) Matrices that are products of idempotents (unspecified number of factors): *I* and singular matrices.

Sums of idempotents - unlimited number of summands

Q: Which $M \in M_n(\mathbb{F})$ decompose as

$$M = P_1 + \cdots + P_r$$
 with P_1, \ldots, P_r idempotents?

(r unlimited)

A: (P.-Y. Wu, 1990) fields of characteristic 0. Necessary and sufficient condition:

$$\operatorname{tr} M \in \mathbb{Z}$$
 and $\operatorname{rank} M \leq \operatorname{tr} M$

A: (fields of characteristic p > 0). Necessary and sufficient condition: $\operatorname{tr} M = k.1_{\mathbb{F}}$ with $k \in \mathbb{Z}$.

Sums of idempotents - fixed number of summands

Q: With r fixed, which $M \in M_n(\mathbb{F})$ decompose as

$$M = P_1 + \cdots + P_r$$
 with P_1, \dots, P_r idempotents?

Answer unknown for general r!

A: (J.-H. Wang, 1995) Solution for complex matrices of *small size*.

Some results for fields of positive characteristic (dSP, 2010)

Sums of idempotents - few summands

• **2 summands:** R. Hartwig and M. Putcha (1990) over $\mathbb C$ (more generally, alg. closed field $\mathbb F$ with $\chi(\mathbb F) \neq 2$). Characterization in terms of the Jordan normal form.

- Generalized to all fields (dSP, 2010).
- 3 summands: no known characterization!

Products of involutions in $GL_n(\mathbb{F})$

 $M \in GL_n(\mathbb{F})$ is a product of involutions iff det $M = \pm 1$ (very old result!)

Q: Least number of necessary factors in general?

A: Four! (Gustafson, Halmos and Radjavi - 1976)

Counter-example for 3 factors:

 αI_n where $\alpha \in \mathbb{C}$ s.t. $\alpha^n = \pm 1$ and $\alpha^4 \neq 1$.

Products of 3 involutions: no known characterization ("Halmos problem").

Products of 2 involutions in $GL_n(\mathbb{F})$

 $M \in GL_n(\mathbb{F})$ product of two involutions iff

$$\exists P \in \mathsf{GL}_n(\mathbb{F}): M^{-1} = PMP^{-1}$$

(Wonenburger, Djokovic; 1966-1967).

Remark: in a group G, if g = ab with $a^2 = b^2 = 1$, then

$$g^{-1} = b^{-1}a^{-1} = ba = b(ab)b^{-1} = bgb^{-1}$$
.

Sums of square-zero matrices

Q: Which matrices are sums of square-zero matrices?

A: Matrices M with tr M = 0.

Q: How many summands at most?

A: Four suffice! (Wang and Wu - 1991)

3 summands do not suffice in general

Characterization of sums of 3 square-zero matrices:

hopeless in general

Sums of 2 square-zero matrices

Q: Which matrices are sums of 2 square-zero matrices?

A1: (Wang-Wu-Botha) If $\chi(\mathbb{F}) \neq 2$, the matrices M such that

$$\exists P \in \mathsf{GL}_n(\mathbb{F}) : -M = PMP^{-1}.$$

A2: (J.D. Botha, 2012) For general fields, matrices *M* that have the exchange property.

Sums of 2 square-zero matrices (continued): Exchange property

 $u \in End(V)$ has the **exchange property** iff

$$\exists \, V_1, \, V_2: \, V = V_1 \oplus V_2, \quad u(\,V_1) \subset V_2 \quad \text{and} \quad u(\,V_2) \subset V_1.$$

Back to the general problem

Q: Is characterizing (p_1, \ldots, p_r) -sums (or products) feasible in general?

A: No!

Q: Are there general methods?

A: Yes.

Q: What is the state of the art for the general case? **A:** The complete solution for r = 2 (sums and products alike) (dSP, 2017)! Complete . . . up to the degenerate case for products (minor issue).

Why r = 2 is interesting?

- A1: Challenging problem!
 - Uses a wide variety of normal forms.
 - Nontrivial problem, surprising results.

A2: Seems indispensable for decompositions of small length.

Some applications of the case r = 2

 \rightarrow Every $M \in GL_n(\mathbb{F})$ with det $M = \pm 1$ is the product of 4 involutions.

Decomposes M = AB where A, B are products of two involutions.

 \rightarrow Every matrix $M \in M_n(\mathbb{C})$ with trace 0 is the sum of 4 square-zero matrices (Wang-Wu; 1991).

Split M = A + B with A and B the sum of two square-zero.

ightarrow Every matrix $M \in M_n(\mathbb{F})$ is a *linear combination* of 3 idempotents. (dSP; 2010)

Requires a fine knowledge of matrices of the form $\alpha P + \beta Q$, with α, β fixed (\neq 0), and P, Q variable idempotents. Amounts to consider ($t^2 - \alpha t, t^2 - \beta t$)-sums.

Some applications of the case r = 2 (continued): stable results

$$ightarrow$$
 Let $M \in M_n(\mathbb{F})$ with tr $M = 0$.
Then $\begin{bmatrix} M & 0_n \\ 0_n & 0_n \end{bmatrix}$ is the sum of 3 square-zero matrices! (dSP, 2017)

$$\rightarrow$$
 Let $M \in GL_n(\mathbb{F})$ with det $M = \pm 1$.

Then
$$\begin{bmatrix} M & 0_n \\ 0_n & I_n \end{bmatrix}$$
 is the product of 3 involutions! (dSP, 2019)

Main ideas for the r = 2 problem

Here

$$p(t) = t^2 - (\operatorname{tr} p) t + p(0)$$
 and $q(t) = t^2 - (\operatorname{tr} q) t + q(0)$.

Problem: characterize the (p, q)-sums (w/ invariant factors)

Five main ideas:

- Sums of roots of p and q.
- Regular/exceptional dichotomy.
- Commutation trick.
- Invariant factors for regular (p, q)-sums.
- Construction of "simple" exceptional (p, q)-sums?

Sums of roots of p and q (1)

Split
$$p(t) = (t - x_1)(t - x_2)$$
 and $q(t) = (t - y_1)(t - y_2)$ in $\overline{\mathbb{F}}[t]$.

Important object: $\sigma := x_1 + x_2 + y_1 + y_2 = \operatorname{tr}(p) + \operatorname{tr}(q) \in \mathbb{F}$.

Sums of roots of p and q (2)

Rough idea: If u is a (p, q)-sum, then $\operatorname{Sp}(u) \setminus (\operatorname{Root}(p) + \operatorname{Root}(q))$ invariant under s (and same Jordan cells for z and s(z)).

Yet:

- This condition is not sufficient.
- Additional nontrivial condition if s(z) = z and z ∉ Root(p) + Root(q).
- Eigenvalues in Root(p) + Root(q) can fail to have the symmetry property.
- "Quasi-symmetry" between Jordan cells of z and s(z) if z ∈ Root(p) + Root(q).

Regular/exceptional dichotomy (1)

Let $u \in End(V)$ (V vector space of finite dimension).

- u regular (w/ respect to (p,q)) when it has no eigenvalue in Root(p) + Root(q) (in $\overline{\mathbb{F}}$)
- u exceptional (w/ respect to (p,q)) when it has all its eigenvalues in Root(p) + Root(q) (in $\overline{\mathbb{F}}$).

Basic principle: unique splitting

$$u = u_r \oplus u_e$$

with u_r regular and u_e exceptional.

Idea: Fitting decomposition of $F_{p,q}(u)$ where

$$F_{\rho,q}(t) := \prod_{i,j} (t - (x_i + y_j)) \in \mathbb{F}[t].$$

Regular/exceptional dichotomy (2)

Theorem

Let $u \in \text{End}(V)$. Then u is a (p,q)-sum iff both u_r and u_e are (p,q)-sums.

Proof. If u = a + b where p(a) = q(b) = 0, then:

- a and b commute with $F_{p,q}(u)$ (to be explained later);
- a and b stabilize the Fitting decomposition of $F_{p,q}(u)$;
- resulting endomorphisms yield that u_r and u_e are (p, q)-sums.

Warning: in general a (p, q)-sum can split $u = u_1 \oplus u_2$ without u_1 and u_2 being (p, q)-sums.

Basic example: $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ is a (t^2, t^2) -sum but not [1]!

Commutation trick (1)

In an \mathbb{F} -algebra \mathcal{A} , let a,b with p(a)=q(b)=0. Quadratic conjugates:

$$a^* = (\operatorname{tr} p) \mathbf{1}_{\mathcal{A}} - a$$
 and $b^* = (\operatorname{tr} q) \mathbf{1} - b$,

so that

$$aa^* = a^*a = p(0)1_A$$
 and $bb^* = b^*b = q(0)1_A$.

Note that $p(a^*) = q(b^*) = 0$.

An important element:

$$ab^* + ba^* = (\operatorname{tr} q) a + (\operatorname{tr} p) b - (ab + ba) = b^*a + a^*b.$$

Lemma (Commutation lemma)

a and b commute with $ab^* + ba^*$.

Commutation trick (2)

Pseudo-conjugate of u = a + b:

$$u^{\star} := a^{\star} + b^{\star} = \sigma \, \mathbf{1}_{\mathcal{A}} - u$$

Pseudo-norm of *u*:

$$uu^\star = ab^\star + ba^\star + aa^\star + bb^\star = ab^\star + ba^\star + (p(0) + q(0)) \mathbf{1}_\mathcal{A}$$

commutes w/ a and b.

That is, $u(u - \sigma 1_A)$ commutes w/ a, b.

Application:

$$F_{\rho,q}(t) = \prod_{i,j} (t - x_i - y_j) = Q(t^2 - \sigma t)$$

for

$$Q = (t + (x_1 + y_1)(x_2 + y_2))(t + (x_1 + y_2)(x_2 + y_1)) \in \mathbb{F}[t].$$

Conclusion: a and b commute with $F_{p,q}(u)$.

Regular (p, q)-sums: a necessary condition (1)

Frobenius normal form.

Companion matrix of monic polynomial $r(t) = t^n - \sum_{k=0}^{n-1} a_k t^k$:

Theorem (Frobenius)

Let $u \in \text{End}(V)$ (V vector space of finite dimension). Then u represented by block-diagonal $C(R_1) \oplus \cdots \oplus C(R_s)$ for a unique list (R_1, \ldots, R_s) of monic polynomials s.t. R_{i+1} divides R_i . R_1, \ldots, R_s : the **invariant factors** of u.

Regular (p, q)-sums: a necessary condition (2)

Theorem

Let $u \in \text{End}(V)$ regular (p, q)-sum. Then each invariant factor of u reads $R(t^2 - \sigma t)$.

Starting idea of proof for alg. closed fields: if u = a + b with p(a) = q(b) = 0 then a, b have no common eigenvector.

Remark: $M := C(R(t^2 - \sigma t))$ always similar to $\sigma I - M$.

Condition sufficient when p or q has a root in \mathbb{F} ; not in general!

Regular (p, q)-sums: a necessary condition (3)

Counterexample for sufficiency: $p = q = t^2 + 1$ over reals.

The companion matrix $M := C(t^2 + 2)$ is *not* a (p, q)-sum!

Otherwise M = A + B with $A^2 = B^2 = -I$, hence

$$M^2 = (A + B)^2 = A^2 + B^2 + AB + BA = -2I + AB + BA$$

and so

$$BA = -AB$$
.

Then $\mathbb{R}[A, B]$ isomorphic to \mathbb{H} (quaternions).

 \rightarrow Structure of left \mathbb{H} -vector space on \mathbb{R}^2 ! Impossible (dimension constraints)!

Regular (p, q)-sums: necessary and sufficient condition

The full characterization of regular (p, q)-sums (dSP 2017) requires deep results on **quaternion algebras**, a generalization of quaternions ...

Exceptional (p, q)-sums: the basic construction (1)

Old trick (dates back to Hartwig, Putcha, Wang, Wu).

Assume p, q split over \mathbb{F} .

First matrix:

$$A = \left\{ \begin{bmatrix} x_1 & 0 \\ 1 & x_2 \\ x_1 & 0 \\ 1 & x_2 \end{bmatrix} \oplus \begin{bmatrix} x_1 & 0 \\ 1 & x_2 \\ x_1 & 0 \\ 1 & x_2 \end{bmatrix} \oplus \cdots \oplus \begin{bmatrix} x_1 & 0 \\ 1 & x_2 \\ x_1 & 0 \\ 1 & x_2 \end{bmatrix} \oplus \begin{bmatrix} n \text{ even} \end{bmatrix} \right.$$
 (*n* even)

Second matrix:

$$B = \begin{cases} \begin{bmatrix} y_1 \end{bmatrix} \oplus \begin{bmatrix} y_2 & 0 \\ 1 & y_1 \\ y_2 & 0 \\ 1 & y_1 \end{bmatrix} \oplus \cdots \oplus \begin{bmatrix} y_2 & 0 \\ 1 & y_1 \\ y_2 & 0 \\ 1 & y_1 \end{bmatrix} \oplus \begin{bmatrix} y_2 \end{bmatrix} & (n \text{ even}) \\ \begin{bmatrix} y_1 \end{bmatrix} \oplus \begin{bmatrix} y_2 & 0 \\ 1 & y_1 \end{bmatrix} \oplus \begin{bmatrix} y_2 & 0 \\ 1 & y_1 \end{bmatrix} & (n \text{ odd}) \end{cases}$$

Exceptional (p, q)-sums: the basic construction (2)

Exceptional (p, q)-sums: the basic construction (3)

Set

$$z_1 := x_1 + y_1$$
 and $z_2 := x_2 + y_2$, $n = 2q + \varepsilon$ (Euclidean division).

Then

$$A+B\simeq C((t-z_1)^{q+\varepsilon}(t-z_2)^q)$$

If $z_1 = z_2$ then

$$A + B \simeq J_n(z_1)$$
 (Jordan cell).

If $z_1 \neq z_2$, then

$$A+B\simeq J_{q+arepsilon}(z_1)\oplus J_q(z_2).$$

What about products?

Assume $p(0)q(0) \neq 0$ (non-degenerate case). Correspondence table:

(p,q)-sums	(p,q)-products	
$x_i + y_j$	$x_i y_j$	
$\sigma := \mathbf{x}_1 + \mathbf{x}_2 + \mathbf{y}_1 + \mathbf{y}_2$	$\pi := x_1 x_2 y_1 y_2 = p(0) q(0)$	
$z \mapsto \sigma - z$ (symmetry)	$z\mapsto \pi z^{-1}$ (inversion)	
u = a + b	u = ab	
$u^{\star} = a^{\star} + b^{\star}$	$u^* = b^* a^* = \pi u^{-1}$	
uu*	$u+u^{\star}=a(b^{\star})^{\star}+(b^{\star})a^{\star}$	
$R(t^2 - \sigma t)$	$t^d R(t+\pi t^{-1})$ where $d=\deg R$	

Is it all over for r=2?

Two possible directions of further research:

endomorphisms of infinite-dimensional vector spaces;

• the "double-quadratic" problem.

Endomorphisms of infinite-dimensional spaces

Theorem (Breaz, Shitov, de Seguins Pazzis, (2016-2018))

Let V vector space of infinite dimension. Let $p_1, p_2, p_3, p_4 \in \mathbb{F}[t]$ all split, monic w/ degree 2.

Every $u \in \text{End}(V)$ is a (p_1, p_2, p_3, p_4) -sum! If $(p_1p_2p_3p_4)(0) \neq 0$, every $u \in \text{GL}(V)$ a (p_1, p_2, p_3, p_4) -product!

Open problem: can some or all the p_i 's be irreducible?

- 3 **summands/factors:** completed for the reasonable cases, probably little room for improvement
- 2 **summands/factors:** probably intractable without *drastic* assumptions on *u* (*V* countable dimensional and *u* locally finite).

The quadratic-quadratic problem for sums

Equip V (vector space of finite dimension with $\chi(\mathbb{F}) \neq 2$) with non-degenerate (symmetric or skewsymmetric) bilinear form

$$B: V \times V \rightarrow \mathbb{F}$$

Every $u \in End(V)$ has a *B*-adjoint u^{\bullet} :

$$\forall (x,y) \in V^2, \ B(u^{\bullet}(x),y) = B(x,u(y)).$$

Let $p, q \in \mathbb{F}[t]$ (with degree 2).

Quadratic-quadratic problem for sums: characterize the B-selfadjoint u s.t.

$$\exists$$
 B-selfadjoint $a, b: u = a + b$ and $p(a) = q(b) = 0$.

Example: sum of two orthogonal projections!

The quadratic-quadratic problem for sums and products

Same issue for skew-selfadjoint elements.

Quadratic-quadratic problem for products: characterize the (p, q)-products in Isom(B).

Same issues for Hermitian forms:

- sums of selfadjoints
- products of unitaries

The quadratic-quadratic problem: the state of the art

Decomposition	Context	Author (year)
Products of 2 involutions	Orthogonal groups	Wonenburger
		(1966)
Products of 2 involutions	Symplectic groups	Nielsen
		(unpublished)
Sums of 2 square-zeros	Selfadjoints or	dSP
	skew-selfadjoints	(in preparation)
Products of 2 unipotents	Orthogonal or	dSP
of index 2	symplectic groups	(in preparation)
All (p,q) -sums	Selfadjoints	dSP
	symplectic form	(in preparation)

Conclusion

Much remains to be done!